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Abstract. Measurements of the surface soil moisture (SM) content are important for a wide range of applications. Among them,

operational hydrology and numerical weather prediction, for instance, need soil moisture information in near-real-time (NRT),

typically not later than 3 hours after sensing. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS)

satellite is the first mission specifically designed to measure soil moisture from space. The ESA level 2 SM retrieval algorithm

is based on a detailed geophysical modelling and cannot provide SM in NRT. This paper presents the new ESA SMOS NRT SM5

product. It uses a neural network (NN) to provide SM in NRT. The NN inputs are SMOS brightness temperatures for horizontal

and vertical polarizations and incidence angles from 30◦ to 45◦. In addition, the NN uses surface soil temperature from the

European Centre for Medium Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS). The NN was trained on

SMOS Level 2 SM. The swath of the NRT SM retrieval is somewhat narrower (∼ 915 km) than that of the L2 SM dataset

(∼ 1150 km), which implies a slightly lower revisit time. The new SMOS NRT SM product was compared to the SMOS Level10

2 SM product. The NRT SM data shows a standard deviation of the difference with respect to the L2 data of < 0.05 m3m−3 in

most of the Globe and a Pearson correlation coefficient higher than 0.7 in large regions of the Globe. The NRT SM dataset does

not show a global bias with respect the L2 dataset but can show local biases of up to 0.05 m3m−3 in absolute value. The two

SMOS SM products were evaluated against in situ measurements of SM from more than 120 sites of the SCAN (Soil Climate

Analysis Network) and the USCRN (United States Climate Reference Network) networks in North America. The NRT dataset15

obtains similar but slightly better results than the L2 data. In summary, the neural network SMOS NRT SM product exhibits

performances similar to those of the Level 2 SM product but it has the advantage of being available in less than 3.5 hours after

sensing, complying with NRT requirements. The new product is processed at ECMWF and it is distributed by ESA and via the

European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) multicast service (EUMETCast).
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1 Introduction

Surface soil moisture (SM) represents less than 0.001 % of the global freshwater budget by volume but it plays an important

role in the water, carbon and energy cycles (Lahoz and De Lannoy, 2013). SM is the water reservoir for plants and agriculture

and it affects the evolution of diseases such as malaria (Montosi et al., 2012; Peters et al., 2014). The amount of moisture in

the soil is an important variable to understand the coupling of the continental surface and the atmosphere (Koster et al., 2004;5

Seneviratne et al., 2006; Tuttle and Salvucci, 2016). Surface SM softens the effect of precipitations, affects the partitioning of

the water cycle (infiltration and run-off, and therefore the groundwater storage McColl et al. (2017)) and it can can also be used

to improve rainfall estimations (Pellarin et al., 2008; Crow et al., 2009; Brocca et al., 2016). SM measurements have been used

to perform data assimilation into land surface models (Xu et al., 2015; Blankenship et al., 2016; Lievens et al., 2016), SVAT

(Soil Vegetation Atmosphere Transfer) models (Martens et al., 2016; Ridler et al., 2014; Muñoz Sabater et al., 2007) and in10

carbon-cycle models (Scholze et al., 2016). SM data assimilation can improve river discharge predictions, and remote sensing

measurements are useful in otherwise data-scarce catchments (Alvarez-Garreton et al., 2016; Chen et al., 2011; Pauwels et al.,

2002). SM measurements are useful to monitor landslide risks (Hawke and McConchie, 2011) and remotely sensed SM has

been used to compute landslide susceptibility maps (Ray et al., 2010).

Regarding flood forecasting, in the framework of the European Flood Awareness System (EFAS) the forecast accuracy15

improves significantly (5-10%) when remotely sensed SM is assimilated in addition to discharge data (Wanders et al., 2014).

SM initial conditions are among the most important hydrological properties affecting flash flood triggering (Norbiato et al.,

2008; Ponziani et al., 2012). The assimilation of soil moisture products from the Advanced Scatterometer (ASCAT) has been

successfully used in the context of flash flood early warning systems in Mediterranean catchments (Cenci et al., 2016).

In addition to operational hydrology applications, operational numerical weather prediction also benefits from remotely20

sensed SM data assimilation. Meteorological agencies such as the European Centre for Medium Range Weather Forecasts

(ECMWF) and the United Kingdom Met Office assimilate ASCAT surface SM into their operational numerical weather pre-

dictions models (de Rosnay et al., 2013; Dharssi et al., 2011). The approach has also been tested in off-line mode at Meteo

France (Barbu et al., 2014). To be useful for operational applications, remotely sensed data should be available in near-real-time

(typically less than 3-4 hours after sensing, hereafter NRT).25

The Soil Moisture and Ocean Salinity (SMOS) European Space Agency (ESA) satellite (Kerr et al., 2010) is the first in-

strument that has been specifically designed to measure soil moisture from space. It carries an L-Band (1.4 GHz) radiometer

to perform full polarization and multi-angular (0◦ - 60◦) measurements of the Earth thermal emission. ECMWF uses SMOS

NRT brightness temperatures in their operational Integrated Forecasting System (Muñoz Sabater et al., 2012). The ESA SMOS

operational Level 2 SM retrieval algorithm is based on a point-per-point iterative minimization of the difference of a physical30

model and the satellite measurements (Kerr et al., 2012). The free parameters are the soil moisture content and the 1.4 GHz

opacity, which is mainly due to the water content of the vegetation in between the soil surface and the sensor (which some

authors refer to as VOD, vegetation optical depth).
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Many studies have evaluated the SMOS L2 SM dataset in comparison to other remote sensing datasets, models and in situ

measurements (Al Bitar et al., 2012; Wanders et al., 2012; Albergel et al., 2012; Bircher et al., 2013; Al-Yaari et al., 2014a, b;

Leroux et al., 2014; Louvet et al., 2015; Kerr et al., 2016). SMOS shows very good global performance although other remote

sensing and model products can show better performances at some sites. In any case, datasets from the only two instruments

specifically conceived to measure SM, SMOS and NASA’s Soil Moisture Active Passive (SMAP), compare very well with

each other (Jackson et al., 2016; Burgin et al., 2016).5

As already mentioned, most operational users over land, in particular in numerical weather prediction and operational hy-

drology, require SM information to be available in NRT, typically referring to less than 3-4 h after sensing. This requirement

cannot be met with the operational SMOS level 2 processor due to the complexity of the geophysical retrieval algorithm and

associated processing times. However, with 6 years of SMOS measurements available, statistical algorithms can be exploited

to provide faster retrievals and neural networks have been shown to be a promising technique to generate a SM dataset from10

SMOS brightness temperatures (Rodríguez-Fernández et al., 2015). Based on the latter, a neural network processing chain to

provide SMOS SM in NRT has been implemented by ESA. The requirements are that the NRT dataset should display at least

the same accuracy as the geophysical level 2 soil moisture data product, the data should be retrieved over a large swath, and

the retrieval should rely on a minimum of auxiliary data files. The new NRT product is available from 2016 onwards and it

is distributed through the World Meteorological Organization’s Global Telecommunication System (GTS) and the European15

Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) EUMETCast service in NetCDF format. EU-

METCast is a dissemination system that uses commercial telecommunication geostationary satellites and research networks to

multi-cast data files to a wide user community.

This paper describes the SMOS NRT SM processing chain and discuss the first evaluation results. It is organized as follows.

Section 2 describes the data used for the implementation and the validation of the SMOS NRT SM product. Section 3 discusses20

the NRT SM processing chain (more details are given in the Appendix). Section 4 contains a description of the methods used

to evaluate the NRT SM product. Section 5 presents the evaluation results. Finally, a summary is presented in Section 6.

2 Data

2.1 SMOS satellite

SMOS (Mecklenburg et al., 2012; Kerr et al., 2010) measures the thermal emission from the Earth at a frequency of 1.4 GHz25

in full-polarization and for incidence angles from 0◦ to ∼ 60◦. The full incidence angle range is accesible in the center of

the swath. On the contrary, only angles in the 40◦-45◦ range are accessible all across the swath. SMOS has 69 antennas to

perform interferometry and synthesize an aperture of ∼ 7.5 m (Anterrieu and Khazaal, 2008). The spatial resolution on the

ground, defined as the projection of the full width at half maximum of the synthesized beam, is 43 km on average over the

field of view (Kerr et al., 2010). The satellite follows a sun-synchronous polar orbit with 6:00 am/pm equator overpass time for30

ascending/descending half-orbits.
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2.1.1 SMOS Level 2 soil moisture

The SMOS Level 2 algorithm is based on the iterative minimization of the difference in between modelled and observed

brightness temperatures (Tb’s) to retrieve SM and optical depth (τ ). The model uses the τ −ω (single scattering albedo)

approach to account for interaction of L-band radiation with the vegetation (Wigneron et al., 2007). In the case of forest, two

contributions to the opacity are taken into account: one from the arboreous component, which is estimated from the maximum5

Leaf Area Index (LAI, Ferrazzoli et al., 2002), and another from the understory vegetation. Soil temperature is obtained from

ECMWF Integrated Forecast System (IFS) data. For footprints with mixed land cover, the SM content of the minor land cover

is estimated from ECMWF IFS and its contribution to the Tb is fixed. For such cases, the SMOS SM retrieval is only performed

for the dominant land cover class within the footprint (Kerr et al., 2012). ESA Level 2 SM data are provided in an Icosahedral

Equal Area (ISEA) 4H9 grid (Sahr et al., 2003) with a sampling space of 15 km.10

The version of the SMOS L2 SM dataset used in this study is v620, which became operational in May 2015. In order to have

enough data for a robust training of the NN, an additional dataset from 01/June/2010 to 30/June/2012 was reprocessed with the

same version v620 of the L2 SM algorithm. The evaluation of the NRT SM product has been done from May 2015 to the time

of the NRT SM implementation (end of 2015).

2.1.2 SMOS near Real-Time soil moisture15

The SMOS Near Real-Time SM product was obtained training a neural network using SMOS Tb’s and soil temperature from

ECMWF models as input. The training dataset used for the supervised learning phase of the neural network was the SMOS

Level 2 SM product. SMOS Tb’s are provided by ESA to ECMWF in NRT (less than 3 hours after sensing). The SMOS

NRT SM product is computed at ECMWF and delivered to ESA, where the data are sent to EUMETSAT for dissemination

via EUMETCast. The SMOS NRT SM data are provided in NetCDF files in the same ISEA 4H9 grid of other ESA SMOS20

products. The version of the SMOS NRT SM data used in this study is version 100. More details on the NRT SM processor are

presented in Sect. 3 and in the Appendix.

2.2 In situ soil moisture measurements

The SMOS NRT SM product was evaluated against in situ measurements of SM over a large number of sites. The same

evaluation was done with the Level 2 SM product. The in situ data used for those evaluations are described below.25

The Soil Climate Analysis Network (SCAN) of the United States Department of Agriculture (Schaefer et al., 2007) has been

widely used to evaluate modelled and remote sensing soil moisture datasets and it contains over 100 sensors/sites. The sensors

are located in agricultural regions with a relatively homogeneous landscape in many cases. The sensors used in this study are

placed horizontally at 5 cm depth.

The United States Climate Reference Network (USCRN, Bell et al., 2013) is a network of climate monitoring stations with30

sites across the U.S.A., managed and maintained by the National Oceanic and Atmospheric Administration (NOAA). This

network was designed with climate science in mind. The stations are placed in pristine environments expected to be free of
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Figure 1. Comparison of the NRT-NN SM product (a) and the Level 2 SM (b) for one orbit of day 27/May/2012. The corresponding NRT-NN

uncertainty is shown in panel (c), while the L2 SM uncertainty is shown in panel (d).

development for many decades. There are around 140 stations with sensors at different depths. The sensors used in this study

are horizontally installed at 5 cm.

The in situ data have been obtained directly from the teams operating both networks but these datasets are also available

from the International Soil Moisture Network Dorigo et al. (2011).5
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Figure 2. Comparison of the NRT-NN SM product (a) and the Level 2 SM (b) for one orbit of day 27/May/2012.

3 The SMOS Near-Real-Time soil moisture processor

The SMOS NRT SMOS processor is based on a neural network approach proposed by Rodríguez-Fernández et al. (2015) to

retrieve soil moisture from SMOS observations. In that study, SMOS Level 3 Tb’s (binned in 5◦-width incidence angle bins)

were used as input and ECMWF SM modeled fields were used as reference data during the training phase. In the context of the

operational NRT SM processor the main input to the neural network are SMOS near-real-time Tb’s and the reference dataset10

used for the training phase is the ESA Level 2 SM dataset. In addition, taking into account operational constrains, the only

complementary data used for the retrieval are soil temperature estimations from ECMWF models.

3.1 Input data

The input to the SMOS NRT SM processor are SMOS near-real-time Tb’s, which are distributed by ESA to ECMWF in BUFR

(Binary Universal Form for the Representation of meteorological data) format (Gutierrez and Canales Molina, 2010; de Rosnay

et al., 2012). The Tb’s are provided with the polarization referred to the antenna reference frame XY . Several quality checks5

are performed to filter the Tb’s: TbX and TbY should be in the expected physical range [80 K − 340 K] and the real and
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Figure 3. Mean SM for the NRT (a) and the L2 (b) SMOS products. Pearson correlation (c), bias (d), root mean square of the difference (e)

and standard deviation (f) of the difference of the NRT SM and L2 SM.

imaginary components of the cross-polarised measurements (TbXY ) should be in the range [−50 K, 50 K], otherwise the Tb’s

are considered to be corrupted or affected by RFI (Radio Frequency Interference from human-built equipement). The observed

Tb’s are filtered out if a specific BUFR flag indicates that the observation is located in a zone affected by the aliased image of

the Sun. The selected NRT Tb’s are transformed from the antenna-based XY reference frame to the ground-based horizontal

and vertical (HV ) reference frame as described by Al Bitar et al. (2017).

In a second step the HV Tb’s are averaged in 5◦-width incidence angle bins. Three angle bins are actually used for training

and applying the neural network: 30◦– 35◦, 35◦– 40◦, and 40◦– 45◦. As discussed by Rodríguez-Fernández et al. (2016), using

these three angle bins is the best trade off of performances (which improve with a large angular signature) and swath-width5

of the retrieval (which decreases with an increasing number of angle bins used). With this configuration SM is retrieved in

the central 914 km of the swath (the maximum possible swath is ∼ 1150 km). A SM retrieval can only be done if there is a

well-defined value of the Tb’s for all the three angle bins and the two polarizations H and V . The current implementation of

the NRT SM processor does not perform any interpolation of the Tb versus incidence angle profiles.
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Using the SMOS Tb’s measured at a time t for a given latitude (λ) and longitude (φ) grid point and for each polarization and10

incidence angle bin, Tbλφ(t), a local normalized index can be computed as:

Iλφ(t) = SM
Tminb

λφ + [SMTmaxb

λφ −SMTminb

λφ ]
Tbλφ(t)−Tminbλφ

Tmaxbλφ
−Tminbλφ

(1)

Where Tmaxb and Tminb are the maximum and minimum values of the Tb’s in the local time (λ,φ) series, SMTminb and

SMTmaxb are the associated SM in the SMOS Level 2 SM reference dataset. The index I is computed for each incidence angle

bin and polarization at the time t of the SMOS acquisition and it contains a local information on the dynamic ranges of both15

the measured Tb’s and the reference SM. In the current version of the processor (v100), Tmax,minb and SMTmax,minb have been

computed using data from 01/June/2010 to 30/June/2012 (the same period used to train the neural network, see Sect. 3.2).

The only auxiliary data used by the SMOS SM NRT processor are snow depth and soil temperature from the latest high-

resolution forecast produced by the ECMWF IFS, with a typical latency of less than 1 h. The ECMWF IFS soil temperature

in the 0–7 cm layer is used as input to the NN, as it increases the performances of the retrieval (Rodríguez-Fernández et al.,20

2016). SMOS data from a given grid point are not used if snow is found in that point based on the latest ECMWF snow depth

forecast field or if the soil temperature forecast of the top soil 7 cm is below 274 K. Finally, a SM retrieval is not provided if

more than 50% of the SMOS footprint is covered by water. This filter avoids spurious too high soil moisture values near the

coastlines, for instance.

3.2 The neural network processor25

The HV angle-binned Tb’s have been collocated with ECMWF IFS forecasts for the soil temperature and snow cover and

finally they have been collocated with version 620 SMOS L2 SM data (Kerr et al., 2012) in the 01/June/2010 to 30/June/2012

period. As discussed above, a local normalized index I has been computed from extreme Tb’s and the associated L2 SM. In

addition to the filters discussed above, to compute the extreme values tables and for the training of the NN, the following filters

have also been applied:30

– The latitude is limited to the [-60◦,75◦] range.

– The fraction of the SMOS footprint occupied by surface water Water is required to be zero.

– A SMOS L2 SM value associated to the maximum or minimum Tb is required (otherwise I cannot be defined).

– The SM uncertainty provided by Dqx (Data Quality Index) parameter in L2 SM data files was required to be lower than

0.06 m3m−3 to use the most reliable data for the training.5

The input vectors contain Tb’s and I indexes for H and V polarizations and the three angle bins from 30◦ to 45◦ and the

soil temperature from 0 to 7 cm from ECMWF IFS forecast. Therefore, input vectors have a total of 13 elements. All the 13

elements must be well-defined to train the NN and there must be a well-defined associated SM value.
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One fifth of the vectors in the training data base were selected randomly to have∼ 3×105 vectors. A subset of 60% of those

vectors is used for the actual training, 20% is used for evaluation of the NN performances during the training and to avoid10

over-training, the final 20% is used to test the performances of the trained NN a posteriori. Gradient back-propagation and

minimization with the Levemberg-Marquard algorithm has been used. One single hidden layer with 5 neurons has been used,

as it has been shown by Rodríguez-Fernández et al. (2016) that it is enough to capture the relationship between the input data

and the reference SM and while keeping the NN as simple as possible. No signs of overtraining were found and the training

was stopped after 50 iterations when the mean squared difference was asymptotically approaching to a minimum. When the15

trained NN was applied to the test subset and the NN output was compared to the SMOS L2 SM, the Pearson correlation R

was 0.86, the standard deviation of the difference (STDD) was 0.068 m3/m3 and the Root Mean Square Error or Difference

(RMSE) was also 0.068 m3/m3, which implies that there was not a significant bias in between both SM datasets. This results

show that the NN ability to capture the dynamics of the current L2 SM dataset is very good. The evaluation results discussed

in Sect. 5 below confirm that the quality of the SM-NRT-NN product fulfil the specifications of the operational product.20

NN NRT SM uncertainties were computed by error propagation through the neural network taking into account the error of

the Tb’s used as input as explained in the Appendix.

3.3 SMOS NRT SM processor output

The SMOS NRT SM product is a land-only product, collocated and delivered in the ISEA 4H9 grid (Sahr et al., 2003) common

to other ESA SMOS products. The main characteristics of the product and the description of the fields are presented in Muñoz-25

Sabater et al. (2016). The processor output fields are:

– The ISEA grid point number

– Latitude

– Longitude

– Year

– Month

– Day5

– Seconds from midnight (all times are UT)

– NRT soil moisture

– Soil moisture uncertainty

– RFI probability

Figure 1 shows the NRT-NN SM product and its associated uncertainty for a portion of an orbit of day 27/May/2012.10
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Table 1. Comparison to in situ measurements over the USCRN and SCAN networks. The columns are: the SM product, the mean number

of points in the time series, the mean and median Pearson correlation with respect to in situ measurements, the mean bias (mean in situ SM

minus mean SMOS SM), the RMS and STD of the difference time series averaged over all sites, and the Pearson correlation of the anomalies

time series (Ra). The statistics have been computed independently for the SM-NRT-NN and the SM-L2 product. The number of SM retrievals

is, on average, larger for the SM-L2. The two lower rows show the results using only times for which both the SM-NRT-NN and the SM-L2

products are simultaneously available.

SM Mean Npts Mean R Median R mean Bias mean RMSD Mean STDD mean Ra

L2 186 0.63 0.64 0.035 0.100 0.065 0.56

NRT 94 0.70 0.71 0.036 0.095 0.058 0.48

L2 88. 0.67 0.69 0.026 0.092 0.062 0.59

NRT 88. 0.71 0.72 0.031 0.091 0.056 0.56

4 Methods

4.1 Global evaluation

Several metrics have been used to evaluate the NRT SM dataset from 15/May/2015 to 25/November/2015 against the SMOS

L2 SM dataset. For all grid points λφ, the temporal means of both SM dataset, SM
L2

λφ and SM
NRT

λφ , have been computed as:

SM
NRT

λφ =
1
Nt

Nt∑

i=1

SMNRT
λφ (ti) (2)

and5

SM
L2

λφ =
1
Nt

Nt∑

i=1

SML2
λφ(ti), (3)

using only times (ti) for which a well-defined value is present simultaneously in both datasets. This number is in principle

different for each λφ grid point, but it will be noted as Nt in the following instead of Nλφt to simplify the notation.

A bias map has been computed from the local (λ and φ) mean of each dataset as follows:

Biasλφ = SM
NRT

λφ −SML2

λφ. (4)10

10
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In order to compare the temporal dynamics of the two datasets, the Pearson correlationR has also been computed as follows:

Rλφ =

Nt∑
i=1

(SMNRT
λφ (ti)−SM

NRT

λφ )(SML2
λφ(ti)−SM

L2

λφ)
√

Nt∑
i=1

(SMNRT
λφ (ti)−SM

NRT

λφ )2
√

Nt∑
i=1

(SML2
λφ(ti)−SM

L2

λφ)2
, (5)

where the sum runs for all the points available at a given position λφ: Nt.

The absolute values of the two datasets have been evaluated using the standard deviation of the difference as a metric. The15

local time series difference D of the two datasets was defined as:

Dλφ(t) = SMNRT
λφ (t)−SML2

λφ(t) (6)

The standard deviation of the difference time series (STDD) has been computed as:

STDDλφ =
√
D2
λφ−Dλφ

2
=

√√√√ 1
Nt

Nt∑

i=1

D2
λφ(ti)−

(
1
Nt

Nt∑

i=1

Dλφ(ti)

)2

(7)

In some studies, the STDD is calculated indirectly from the bias and the root mean squared difference (RMSD) and called20

unbiased-RMSD (ubRMSD).

4.2 Local evaluation against in situ measurements

The SMOS NRT SM and the SMOS L2 SM datasets have been evaluated against the in situ measurements discussed in Sect.

2 in a consistent manner. First, for each station available, a quality check of the data was performed. Sites with suspicious data

(e.g. measurements discontinuity, spurious jumps) were eliminated. The locations of the 127 retained stations is showed in Fig.25

4.

The same metrics discussed in the previous section have been computed for the NRT SM dataset with respect to the in

situ measurements and for the L2 SM dataset with respect to the in situ measurements. The Pearson correlation was used to

compare temporal dynamics of two SM datasets. The long term (seasonal) dynamics were compared by computing the Pearson

correlation coefficient R of SML2 and SMNRT with respect to SM inSitu, site per site. In addition, the short-scale dynamics5

were evaluated by computing site per site the Pearson correlation of the anomalies times series. Following Albergel et al.

(2009), the SM anomaly at given time t, SMa(t), was computed using a 31 day window centred at t as follows:

SMa(t) =
SM(t)−Mean(SM(t− 15, t+ 15))

STD(SM(t− 15, t+ 15))
(8)

where SM(t−15, t+15) represents the ensemble of measurements in the 31-day window. The Pearson correlation coefficient

R computed with the anomalies time series will be referred to as Ra in the following.10
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Figure 4. Location of the in situ measurements sites used in this study.

The metrics were computed independently for the NRT and the L2 datasets in a first step. In a second step, the metrics were

recomputed only using times for which both the NRT and the L2 were simultaneously available, and thus, using the same

number of points for the two time series.

5 Results: SMOS NRT soil moisture evaluation

5.1 Swath-level comparison to SMOS L2 SM15

Figures 1a,c show the NRT-NN SM product and its associated uncertainty for of a portion of an orbit of day 27/May/2012. The

corresponding L2 SM and its associated uncertainty as given by the DQX (Data Quality Index) parameter (Kerr et al., 2012) are

also shown (Figs. 1b,d). As discussed in Sect. 3, the swath width of the NRT-SM retrieval is somewhat narrower than the L2

SM one but both maps show similar spatial structures and numerical values. The uncertainties have similar numerical values

as well, but the spatial patters are not the same. This is expected as the two retrieval algorithms are different. Finally, it should5

be noted that the spacial coverage can be different for both products as shown in Fig. 2:

– the NRT SM product can show circle-arc gaps when not all of the angle bins have a well defined Tb value, while in

contrast the L2 algorithm can perform an inversion even if some Tb’s have been filtered out.

– The NRT SM global retrieval algorithm can provide a SM estimate even when the local minimization of the L2 algorithm

does not converge. This can happen mainly in dense forest areas.10
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Figure 5. Boxplots for (a) the Pearson correlation coefficient (R) of the NRT and L2 time series with respect to the in situ measurements

(b) Pearson correlation coefficient of the anomalies time series (Ra), (c) Bias (mean in situ minus mean SMOS SM), and (d) STDD of the

two SMOS products in comparison to in situ measurements. The box contains the middle 50% of the data, the central bar represents the

median value of the distribution. The upper edge (hinge) of the box indicates the 75th percentile of the data set (q3), and the lower hinge

indicates the 25th percentile (q1). The mean values are also shown as black crosses. The upper and lower bars represent the minimum and

maximum values of the distribution excluding outliers. Points are considered as outliers if they are larger than q3 +1.5(q3− q1) or smaller

than q1− 1.5(q3− q1).
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5.2 Global evaluation with respect to SMOS L2 SM

The SMOS NRT SM product has also been compared to the SMOS L2 SM product globally and over the period mentioned

in Sect. 4. Figs. 3a,b show the mean of the NRT and L2 SM products over the period of the study. Both maps show an overall

excellent agreement, although it is possible to appreciate a significant negative bias (−0.05 m3m−3) in the NRT SM product in

the regions with the highest L2 SM (tropical and boreal forest) . The typical number of points with both NRT-SM-NN and SM-15

L2 in the evaluation period is ∼ 100. The correlation of both products is high (> 0.7) over a large part of North-America, the

southernmost part of South-America, the Iberian peninsula, the Sahel and South-Africa, Australia and parts of central Eurasia.

The correlation is significantly lower over forest (both tropical and boreal) and in deserts such as the Sahara. In the Sahara the

low correlation is probably not significant because the SM values are very low and the variance is driven by the noise. Actually,

Fig. 3f shows that the STDD is also very low in this region. Therefore, L2 SM and NRT SM have actually similar values.20

In contrast, dense forest regions show a high STDD in addition to a low R. Therefore, both products show some differences

in these regions. Unfortunately, in situ measurements are not available to perform an independent evaluation of both dataset

for dense forest sites. In conclusion, both products show similar dynamics over large parts of the Globe. The Bias map (Fig.

3d) shows that the NRT SM products shows a tendency to underestimate the L2 SM dataset, which is a expected behaviour

as it has been obtained using a regression technique and extreme values are under-represented in the reference dataset. The25

most significant effect of the bias is to increase the RMSD (Fig. 3e) with respect to the STDD in parts of Europe and Canada.

However, one should note that both the RMSD and the STDD are lower than 0.04 m3m−3 over most of the Globe (all except

the reddish regions in Fig. 3e,f).

5.3 Evaluation with respect to in situ measurements

The SMOS NRT SM product was evaluated against in situ measurements from the SCAN Schaefer et al. (2007) and USCRN30

Bell et al. (2013) networks (Sect. 2). These networks of in situ measurements have been extensively used for the validation of

remote sensing data (Albergel et al., 2009; Rodríguez-Fernández et al., 2015; Al Bitar et al., 2012; Albergel et al., 2012; Kerr

et al., 2016).

The quality metrics discussed in Sect. 4 have been computed site per site independently for the SMOS NRT. The same

evaluation was done for L2 products. The mean number of points in the time series from May 2015 to November 2015 is 186

for the L2 product while is only half of that value for the NRT product. The reason is a longer revisit time of the SM-NRT-NN

product due to the narrower swaths of the retrievals and the lack of retrievals if not all the 6 Tb’s are well defined for both5

polarizations and the three angle bins from 30◦ to 45◦.

Table 1 summarizes the results in the form of averages over all the sites (for the Pearson correlation also the median value

is given). Both SMOS products show a similar mean bias with respect to the in situ measurements, while the mean STDD and

RMSD are slightly lower for the NRT SM product. In order to get further insight into the intrinsic quality differences of both

datasets, the same statistics have been computed but only using times for which both SMOS products are retrieved. The results

14

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-211, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 9 May 2017
c© Author(s) 2017. CC-BY 3.0 License.



Figure 6. (a) Scatter plots showing the Pearson correlation coefficient of the NRT and L2 SM time series with respect to the in situ measure-

ments (R). The errorbars account for the 95% confidence intervals. The red symbols represents an averaged value. (b) Same as (a) but for the

anomalies time series (Ra).

are also shown in Table 1. The differences in the evaluation of both products decreases, but the NRT product still shows a larger

correlation and lower STDD with respect to the in situ measurements than the L2 product.

Since the mean or median values alone do not show the full picture of the evaluation for more than 100 sites, Figs. 5a,b show

boxplots for the Pearson correlation coefficient of the time series (R) and the anomalies times series (Ra), respectively. Figures5

5c,d show boxplots for the bias and the STDD. As expected, there is a large variation from one site to another. The bias and

STDD distributions are similar for both products. The correlation is as high as almost 1 for some sites both for the NRT SM

and L2 SM (the maximum is slightly higher for the later). Interestingly, the lower values of the distribution of the correlation

are higher for the NRT product.
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Finally, Fig. 6 shows scatter plots of the correlation for the time series and for the anomalies time series taking into account10

the respective confidence intervals. For most of the sites, both products show the same statistics with respect to the in situ

measurements and globally, the scatter plot points lie close to the 1:1 line.

6 Conclusions

This paper describes the the SMOS NRT SM processor and the first evaluation of this new operational dataset. This processor

is based on a neural network algorithm similar to that described by Rodríguez-Fernández et al. (2015). The neural network15

uses SMOS NRT brightness temperatures and ECMWF IFS soil temperature in the 0–7 cm layer as input. It has been trained

with SMOS Level 2 SM data as reference. The SMOS NRT brightness temperatures have been transformed from the antenna

reference frame to the ground reference frame to express the polarization as horizontal and vertical components. In addition

they have been binned in 5◦-width incidence angle bins. Soil temperature and snow cover forecasts from ECMWF IFS are used

to filter out frozen soil or soil covered by snow. The uncertainties of the NRT SM data were estimated from the input brightness20

temperature uncertainties.

The SMOS NRT SM product was evaluated with respect to the original SMOS Level 2 SM product using several months

of data. The NRT SM product compares well with the L2 product. The most significant difference is that the NRT SM dataset

shows local negative bias at the positions were the highest SM values were found (basically under tropical forest).

The SMOS NRT SM product was also evaluated with respect to in situ measurements of SM over the SCAN and USCRN25

networks. The NRT product shows similar performances to those of the L2 product. Actually, the mean and median correlation

are slightly higher than those obtained for the L2 product. In addition, the standard deviation of the difference with respect to

the in situ measurements is lower for the NRT product than for the L2 product.

In summary, the SMOS NRT SM product shows similar performance to the Level 2 product but it has the advantage to be

available in NRT. NRT brightness temperatures are received by ECMWF from ESA in less than three hours after sensing. The30

NRT SM production takes on average 15 minutes (the arrival of new NRT TBs is checked every 30 minutes and the actual NRT

SM production takes a few minutes). The SMOS NRT SM product is delivered to ESA and EUMETSAT for dissemination via

EUMETCast. Therefore, the SMOS NRT SM data are available for a large range of operational applications such as numerical

weather prediction, hydrological forecast and crop modelling.

Data availability. The datasets used in this study (Sect. 2) are publicly available. The SMOS L2 SM and NRT SM data can be downloaded5

from ESA. The SMOS NRT SM data is also available via EUMETCast in NRT. The in situ measurements can be downloaded from the

International Soil Moisture Network.
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Appendix A: NRT SM algorithm

The SMOS NRT has been described qualitatively in Sect. 3. The current section describes the algorithm and the output un-

certainties calculation in detail. Complementary information can be found in Rodríguez-Fernández et al. (2016) and Muñoz-10

Sabater et al. (2016).

A1 Neural network specification

The NN discussed in Sect. 3 has two layers. The first layer contains j = 1, ...,nL1 nodes or neurons with an hyperbolic tangent

as activation function. The second layer contains a single neuron with a linear function as activation function. The number of

input elements nin is 13: 6 Tb’s (H and V for incidence angle bins from 30 to 45◦), 6 index I (H and V for incidence angle15

bins from 30 to 45◦), and ECMWF soil Temperature. The inputs range should be re-normalized to have values in the [−1,1]

range. If for each input vector element, the minimum and maximum values found during the training phase are given by the

vectors vmini and vmaxi (i= 1, ...,nin), the normalization can be computed as follows:

vnormi =−1 + 2
vi− vmini

vmaxi − vmini

, ∀i= 1...nin (A1)

The normalized input, together with the first layer weights (WL1) and bias BL1 are used to compute the first layer outputs20

vL1 as follows:

vL1
j = tanh(

nin∑

i=1

W ij
L1 v

norm
i +BjL1), ∀j = 1...nL1 (A2)

The output of the second layer is computed from the first layer outputs, and the second layer weights (WL2) and bias BL2

as follows:

vL2 =
nL1∑

j=1

W j
L2v

L1
j +BL2 (A3)

The values of the weightsWL1 and WL2 and the biasBL1 andBL2 are determined after the training phase. The exact values

for the operational NRT SM processor can be found in Muñoz-Sabater et al. (2016). Finally, to obtain the NN output (vout),

the output of the second layer has to be re-normalized as follows:5

vout = vL2
newMin +

vL2
newMax− vL2

newMin

vL2
oldMax− vL2

oldMin

(vL2− vL2
oldMin); (A4)
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A2 Neural network output uncertainties

From the definition of Iλφ(t) (Eq. 1) it is possible to compute the uncertainties from the Tb’s and SM uncertainties. First, Eq.

1 can be rewritten as:

Iλφ(t) = SM
Tminb

λφ + [SMTmaxb

λφ −SMTminb

λφ ]× I1λφ(t) (A5)10

where I1λφ(t) is given by:

I1λφ(t) =
Tbλφ(t)−Tminbλφ

Tmaxbλφ
−Tminbλφ

(A6)

The uncertainties ∆Iλφ(t) and ∆I1λφ(t) can be computed from uncertainties in Tb’s, in the maximum and minimum Tb’s

and the associated SM values as follows:

∆I2
λφ

(t) = [SMTmaxb

λφ −SMTminb

λφ ]2
(
∆I1λφ(t)

)2 + (A7)15

+ [1− I1λφ(t)]2
(
∆SMTminb

λφ

)2 + (A8)

+ [I1λφ(t)]2
(
∆SMTmaxb

λφ

)2
(A9)

Where ∆I1λφ(t) is given by:

∆I2
1λφ

(t) =
∆Tbλφ(t)2

T 2
Dλφ

+ (A10)

+
(∆Tmaxbλφ

)2

T 2
Dλφ

(
Tmλφ(t)
TDλφ

)2

+ (A11)20

+
(∆Tminbλφ

)2

T 2
Dλφ

(
−1 +

Tmλφ(t)
TDλφ

)2

(A12)

as a function of the uncertainty of the local instantaneous measurement ∆Tbλφ(t) and the uncertainties of the local extreme

Tb’s values (∆Tmaxbλφ
and ∆Tminbλφ

).

The uncertainties of the NN output given by Eqs. A1-A4 can be estimated from the uncertainties in the input vector elements

(∆vi) as follows. First the uncertainties of the normalized input vector can be computed as:

∆vnormi = 2
∆vi

vmaxi − vmini

, ∀i= 1...nin (A13)5

Using those quantities, the uncertainty of the two layers neural network given by Eqs. A2 and A3 can be expressed as:

(∆vL2)2 =
nin∑

i=1





(∆vnormi )2



nL1∑

j=1

W j
L2W

ij
L1σ

j




2




(A14)
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where σj is given by:

σj = 1− tanh2(
nin∑

i=1

W ij
L1 v

norm
i +BjL1), ∀j = 1...nL1 (A15)

It is worth noting that in the current implementation the neural network weights are assumed to be constant after training.10

There exist some methods to estimate the additional output uncertainty that originates from the neural network weight un-

certainty that comes from the uncertainties in the reference data used for the training (see for instance Aires et al., 2004) but

they are too complex to be implemented in the SMOS NRT SM operational processor. In contrast, some uncertainties in the

reference data used for the training have already been taken into account trough ∆SMTminb

λφ and ∆SMTmaxb

λφ in Eq. A9.

Finally, the uncertainty after the normalization of the output can be written as:

∆vout =
vL2
newMax− vL2

newMin

vL2
oldMax− vL2

oldMin

∆vL2; (A16)

Expressing the output uncertainty as Eq. A14 implies that the vector elements vi are independent. However, when using5

index I as input as well as the actual Tb’s, some elements are not independent. Since the uncertainties in Eq. A14 are expressed

in quadratic form, Eq. A14 gives an upper limit to the output uncertainty.
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